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Abstract. Inspired by some works on quantization of dissipative systems, in particular the ones treating the
damped harmonic oscillator and by a paper due to Lukierski, we consider the dissipative system of a charge
interacting with its own radiation, which is the origin of radiation damping. Using the indirect Lagrangian
representation we obtained a Lagrangian formalism with a Chern–Simons-like term. A Hamiltonian analysis
is also done in commutative and non-commutative scenarios, which leads to the quantization of the system.

PACS. 41.60.-m, 04.60.Ds

1 Introduction

The study of dissipative systems in quantum theory is
of strong theoretical interest and of great relevance in
practical applications. However, the standard quantiza-
tion scheme, based on the existence of either a Hamilto-
nian or a Lagrangian function for the system in which we
are interested, is not applicable when the Lagrangian or
Hamiltonian has an explicit time dependence.

Among some approaches to study dissipative systems,
there is one, where in order to implement a canonical quan-
tization scheme, one must first double the phase-space di-
mensions, so as to deal with an effective isolated system
(indirect representation) [2,5]. The new degrees of freedom
thus introduced may be represented by a single equivalent
(collective) degree of freedom for the bath, which absorbs
the energy dissipated by the system. An important system
with appropriate characteristic that allows one to use the
indirect representation is the study of quantum dynamics
of an accelerated charge. It is a dissipative system once
an accelerated charge loses energy, linear momentum, and
angular momentum carried by the radiation field [4,6]. The
effect of these losses to the motion of charge is known as
radiation damping [6].

The process of radiation damping is important in many
areas of electron accelerator operation [7], like in recent ex-
periments with intense-laser relativistic-electron scattering
at lasers frequencies and field strengths where radiation re-
action forces begin to become significant [8, 9].
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The purpose of this letter is to present an alternative
approach to canonical quantization of the RD based on
the doubling of the degrees of freedom, where we get a
Lagrangian model for the system, which is similar to one
obtained by Lukierski et al. in [12] for the free particle,
with a Chern–Simons-like term with high order deriva-
tives. This letter is organized as follows. The Lagrangian
and Hamiltonian formalism are derived in hyperbolic co-
ordinates, writing down the corresponding constraints and
their Dirac brackets of the independent canonical variables.
The Galilean symmetry algebra has also been provided.
Our model can be described either in terms of phase space
variables with commuting space coordinates, or in terms
of new phase space variables with non-commutative space
coordinates. In this space, we have the system, which is
originaly described by an equation of motion whose solu-
tion presents properties like preacceleration (the particle
is accelerated before a force is applied) [6], described as
two coupled harmonic oscillators with the coupling term
due to the effect of the field reaction on the system. So,
when the field reaction is not present, the system, in the
non-commutative space, behaves like a set of two decou-
pled harmonic oscillators. For the choice of phase space
with non-commutative space coordinates, we see that the
Hamiltonian of the model describes a free motion in this
space supplemented by internal degrees of freedom. After
considering free motion in the non-commutative space we
introduce interactions in the classical space with a poten-
tial term which depends on non-commuting D = 2 space
coordinates. Introducing the standard quantized oscillator
variables the quantum Hamiltonian has been provided in
terms of the Casimir operator. We also observe that in the
limit where the dissipation is not present our Hamiltonian
formulation describes the dynamics of the two undamped
harmonic oscillator motion.
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2 The Lagrangian and Hamiltonian formalism

We begin with a review of the problem of the radiation
damping. The equation of motion of one-dimensional ra-
diation damping [6], without external force, is

mẍ − γ
...
x = 0, (1)

where γ = 2
3

me2

c3 and m are independent of time.
Since the system (1) is dissipative a straightforward

Lagrangian description leading to a consistent canonical
formalism is not available.Todevelop a canonical formalism
we are required to consider (1) along with its time-reversed
image [5]

mÿ + γ
...
y = 0 (2)

so that the composite system is conservative. The system
(1) and (2) can be derived from the Lagrangian [10]

L = mẋẏ +
γ

2
(ẋÿ − ẍẏ) , (3)

where x is the RD coordinate and y corresponds to the time-
reversed counterpart. So, the system made of the RD and of
its time-reversed image globally behaves as a closed system.
Introducing the hyperbolic coordinatesx1 andx2 [11]where

x =
1√
2

(x1 + x2) ; y =
1√
2

(x1 − x2) , (4)

the above Lagrangian can be written in a compact nota-
tion as

L =
m

2
gij ẋiẋj − γ

2
εij ẋiẍj , (5)

where the pseudo-Euclidean metric gij is given by g11 =
−g22 = 1, g12 = 0 and ε12 = −ε21 = 1. This Lagrangian is
similar to the one discussed by Lukierski et al. [12] (that
is a special non-relativistic limit of a relativistic model of
the particle with torsion investigated in [13]), but in this
case we have a pseudo-Euclidean metric. The equations of
motion corresponding to the Lagrangian (5) are

mẍ1 − γ
...
x 2 = 0, mẍ2 − γ

...
x 1 = 0. (6)

Now, due to the presence of a second order derivative
in the Lagrangian, we have to introduce two momenta

pi =
∂L

∂ẋi
− d

dt

∂L

∂ẍi
; p̃i =

∂L

∂ẍi
. (7)

In our case

pi = mgij ẋj − γεij ẍj ; p̃i =
γ

2
εij ẋj . (8)

The Hamiltonian hence reads

H = ẋipi + ẍip̃i − L

=
m

2
gij ẋiẋj − γεij ẋiẍj , (9)

or, using (8), we have

H =
2m

γ2 p̃igij p̃j − 2
γ

piεij p̃j . (10)

Note that this theory has two constraints,

χi = ẋi +
2
γ

εij p̃j , (11)

where the eight-dimensional phase space is given by
(xi, ẋi, pi, p̃i). These constraints lead to the replacement
of the canonical Poisson brackets:

{xi, pj} = δij {ẋi, p̃j} = δij , (12)

where the remaining Poisson brackets are all null, by the
Dirac brackets of the independent canonical variables
(xi, ẋi, pi)

{xi, pi}D = δij , {ẋi, ẋj}D =
1
γ

εij , (13)

with all Dirac brackets null. There is another combination
of independent canonical variables, which is (xi, pi, p̃i) [12].

The Hamiltonian equations of motion take the form

ẋi = {xi, H}D = − 2
γ

εij p̃j ;

ṗi = {pi, H}D = 0; (14)

˙̃pi = {p̃i, H}D =
m

γ
εingnj p̃j − 1

2
pi.

We can also use the Faddeev–Jackiw method [15] to
obtain the brackets (13). Introducing a Lagrange multiplier
which equates ẋ to z, and replacing all differentiated x-
variables in the Lagrangian (5) by z-variables, one has a
first-order Lagrangian:

L(0) = piẋi − γ

2
εijziżj +

m

2
gijzizj − pizi, (15)

whose canonical structure can be analyzed by the Faddeev–
Jackiw method, yielding the following symplectic matrix:

f (0) =


0 −1 0

1 0 0
0 0 −γεij


 , (16)

and considering that the matrix (16) is inversible, we get
the Poisson brackets given by

{Ym, Yn}D = f−1
mn. (17)

By (16) and (17) we get the symplectic structure (13).
To obtain the quantized form of the canonical commu-

tation relations (13) as well as the Heisenberg equations
of motion we perform the replacement

{·, ·}D → (1/i�)[·, ·] . (18)

3 The Noether charges and their symmetries

It is important to point out that this model, described
by the Lagrangian (5), presents Galileo symmetry. So, let
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Table 1. The symmetries and corresponding generators

Time-tanslation Gτ = Hτ

H = 2m
γ2 p̃igij p̃j − 2

γ
piεij p̃j

Rotation Gr = Jφ

J = xiεijpj − 2
γ
p̃2

i

Galilei boost Gvi = Bivi

Bi = pit + 2p̃i − mgijxj

Space-translation Ct = Piδi

Pi = pi

us consider a Lagrangian L(xi; ẋi; ẍi) which depends on
the first and second time derivatives. The variation of the
action S =

∫
dt L under the change xi → xi + δxi takes

the form

δS =
∫

δL =
∫

dt

(
δxi

∂L

∂xi
+ δẋi

∂L

∂ẋi
+ δẍi

∂L

∂ẍi

)

=
∫

dt
d
dt

(δxipi + δẋip̃i) , (19)

from which we obtain the following formulae for the gen-
erator:

G(t) = δxipi + δẋip̃i, (20)

which is conserved, d
dt G(t) = 0.

Let us list the generators of the symmetry for the La-
grangian (5) (see [12] for details) in Table 1.

Here τ is the translation shift of the time variables, δi

is the translation shift of variables and φ is the rotation
angle of the variables.

4 Quantization of the free model
with non-commuting space coordinates

Now, in analogy with [12], our model can be described in
terms of new phase space variables with non-commutative
space coordinates given by the relations [Xi, Xj ] = i k

m2 εij

[12, 14]. That is important, because thus we can see that
the dynamics in the model considered (see (10)) can be sep-
arated into two independent sectors – describing external
and internal dynamics. For our Galilean system, described
by Lagrangian (5), the non-commuting position variables
Xi can be expressed as

Xi = xi − 2
m

gij p̃j . (21)

Considering Pi = pi and redefining the second pair of the
momenta p̃i by

P̃i =
γ

2m
gijpj + εij p̃j , (22)

we obtain the following standard canonical Dirac brackets
for the six phase space variables (Xi, Pi, P̃i):

{Xi, Xj}D = − γ

m2 εij , {P̃i, P̃j}D =
γ

4
εij ,

{Xi, Pj}D = δij , {Xi, P̃j}D = {Pi, Pj} = 0, (23)

where the relations given in (13) were used.
Note that due to the parameter γ, non-commutativity

is introduced in the coordinate sector [15–17]. One can now
consider the dynamics of the model using this non-com-
mutative framework, and rewrite the Hamiltonian (10) as

H =
1

2m
PigijPj − 2m

γ2 P̃igijP̃j . (24)

We thus see, in the non-commutative phase space, that the
Hamiltonian, (10), can be diagonalized so that it describes
a free motion (external modes) supplemented by the oscil-
lator modes (“internal” modes) with negative sign of their
energies [12]. But, as in [12], the variables P̃i can be iden-
tified with a standard pair of canonical variables. Indeed,
identifying P̃1 =

√
γ x̃, P̃2 =

√
γ p̃ and introducing the

oscillator variables

C =
1√
2

(x̃ + ip̃), C∗ =
1√
2

(x̃ − ip̃), (25)

we find that the Hamiltonian (24) can be rewritten as

H =
1

2m
PigijPj − 2m

γ
(C2 + C∗2) (26)

and from (25) that {C, C∗}D = −i/2.
Note that, unlike [12], in our model we do not need to

impose a subsidiary condition (C|phys〉 = 0) because in
this case

〈phys|(C2 + C∗2)|phys〉 = 0. (27)

So we see that the second term in (26) do not contribute,
on average, to the spectrum of the Hamiltonian (26).

5 Introducing an interaction to the free model

Next we shall introduce interactions to the free Lagrangian
(5), by a potential energy term, which do not modify the
internal Hamiltonian (second term in (24)) and add to
the free external Hamiltonian (first term in (24)), an arbi-
trary potential U(X) involving non-commutative variables,
as follows:

H(ext) =
1

2m
PigijPj + U(X). (28)

This leads to deformation of the constraint algebra, since
the secondary constraint, (11), now involves a derivative of
the potential. In the simplest case one can assume that the
potential U is quadratic (electric harmonic potential), so

H(ext) = H
(ext)
1 − H

(ext)
2 , (29)

where

H
(ext)
i =

1
2m

P 2
i +

mω2

2
X2

i , i = 1, 2. (30)
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The Hamilton equations in the non-commutative space,
using (23), can be written as

Ẋi =
{

Xi, H
(ext)
j

}
D

=
γω2

m
εijXj − 1

m
Pi,

Ṗi =
{

Pi, H
(ext)
j

}
D

= −mω2Xi. (31)

So, we get the following equation of motion for the non-
commutative variable Xi:

mẌi − γω2εijẊj − mω2Xi = 0. (32)

Notice that the system in the space of non-commutative
coordinates behaves as a set of coupledharmonic oscillators,
where the coupling term is due to the radiation damping
constant γ. So, when the field reaction is not considered, the
system behaves like a set of decoupled harmonic oscillators.
Here X is given by (21) and ω is the frequency. Introducing,
in the standard way, the oscillator variables

Ai =
√

mω

2
Xi + i

√
1

2mω
Pi, (33)

A∗
i =

√
mω

2
Xi − i

√
1

2mω
Pi, (34)

we get

H
(ext)
1(2) =

ω

2

(
A1(2)A

∗
1(2) + A∗

1(2)A1(2)

)
. (35)

From the Dirac brackets (see (23)) for the non-commuta-
tive variables Xi and Pi, using the substitution {·, ·}D →
(1/i�)[·, ·], one can find that

[
Ai, A

†
j

]
= �δij − i�γω

2m
εij , (36)

[Ai, Aj ] =
[
A†

i , A
†
j

]
= − i�γω

2m
εij . (37)

The parameter γ introduces a deformation of the Heisen-
berg commutation relations, which does not obstruct the
quantization of the model as well discussed by Banerjee
et al. in [2]. However, we are interested in quantizing the
model in the commutative phase space. To this end we
build a commutative phase space introducing the follow-
ing space coordinates:

X̂i = Xi − γ

2m2 εijPj

= xi − 2
m

gij p̃j − γ

2m2 εijpj , (38)

where {
X̂i, Pj

}
D

= δij ,

{
X̂i, X̂j

}
D

=
{

X̂i, P̃j

}
D

= 0. (39)

Note that the commuting variables X̂i are not physical,
since they transform incorrectly under Galilean boosts,

namely as {B̃i, X̂j} = δijt − γ
m εingnj . So, the coordinates

Xi describing the non-commutative plane are identified
uniquely as the coordinates forming a Galilean vector.

Hence we can write the Hamiltonian (29) using the
variables (X̂, P ) [14] as follows:

H
(ext)
i =

P 2
i

2m̃
+

m̃ω̃2

2
X̂2

i +
γω2

2m
εijX̂iPj , (40)

where i = 1, 2 and

m̃ = m

(
1 + ω2 γ2

4m2

)−1

, (41)

ω̃2 = ω2
(

1 + ω2 γ2

4m2

)
. (42)

If we introduce the standard quantized oscillator variables

ai =

√
m̃ω̃

2�
X̂i + i

√
1

2m̃ω̃�
Pi, (43)

a†
i =

√
m̃ω̃

2�
X̂i − i

√
1

2m̃ω̃�
Pi, (44)

we find that

H(ext) = �ω̃(a†
1a1 − a†

2a2) + i�
ω2γ

2m
(a†

1a
†
2 − a1a2). (45)

Introducing the following notation:

Ω = ω

(
1 + ω2 γ2

4m2

)1/2

, Γ = ω2 γ

2m
, (46)

Equation (45) can be rewritten as

H(ext) = H0 + HI, (47)

where
H0 = �Ω

(
a†
1a1 − a†

2a2

)
, (48)

and
HI = i�Γ

(
a†
1a

†
2 − a1a2

)
. (49)

Following [3], we see that the dynamical group struc-
ture associated with our system is that of SU(1, 1). The
generators of this algebra are

J+ = a†
1a

†
2, J− = J†

+ = a1a2, (50)

J3 =
1
2

(
a†
1a1 + a†

2a2 + 1
)

, (51)

corresponding to the Casimir operator C = 1
4 + J2

3 −
1
2 (J+J− + J−J+) = 1

4

(
a†
1a1 − a†

2a2
)2

. The Hamiltonians
(48) and (49) are then rewritten as

H0 = 2�ΩC, HI = −2�ΓJ2, (52)

where [H0, HI] = 0, as H0 is in the center of the dynami-
cal algebra.
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Let us denote by |n1, n2〉 the set of simultaneous eigen-
vectors of a†

1a1 and a†
2a2, with n1, n2 non-negative integers.

One can see that the eigenvalue of H0 in this frame is the
constant quantity 2�Ω(n1 − n2). The eigenstates of HI
can be written in the standard basis, in terms of the eigen-
states of

(
J3 − 1

2

)
in the representation labeled by the value

j ∈ Z1/2 of C, {|j, m〉 ; m ≥ x |j|}:

C |j, m〉 = j |j, m〉 , j =
1
2

(n1 − n2); (53)
(

J3 − 1
2

)
|j, m〉 = m |j, m〉 , m =

1
2

(n1 + n2). (54)

Note that this Hamiltonian is similar to the one obtained
in [3] for the damped harmonic oscillator, with the differ-
ence in the notation introduced in (46). It is important to
point out that, as in [3], our Hamiltonian formulation (47)
is the simple undamped harmonic oscillator when γ → 0
(Ω → ω). The states generated by a†

2 represent the sink
where the energy dissipated by the accelerated charge par-
ticle flows. We see therefore that the a2-system thus repre-
sents the reservoir or heat bath coupled to the a1-system.

6 Concluding remarks

We have shown that in the pseudo-Euclidean metrics the
Lagrangian density of the system made of a charge interact-
ing with its own radiation and of its time-reversed image,
this last introduced by doubling the degrees of freedom
as required by the canonical formalism, actually behaves
as a closed system described by the Lagrangian (3). On
the hyperbolic plane, (6) shows that the dissipative term
actually acts as a coupling between the systems x1 and x2.
Our model can be interpreted as describing a free motion
in the D = 2 space with non-commuting coordinates and
internal modes with negative energies. However, because
of the pseudo-Euclidean metrics, we have shown that these
internal modes do not contribute to the energy spectrum.
We do not need to impose a subsidiary condition. Finally,
by introducing the commuting position variables (see (38)),
we observe that the quantum Hamiltonian is obtained and
that the dynamical group structure associated with our
system is that of SU(1, 1). Also, it is shown that the non-
commutative coordinates Xi are identified uniquely as the
coordinates forming the Galilean vector. In future works,
we will study the supersymmetric extension and the intro-
duction of gauge interactions into the model.
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